superb - Summary Plots with Adjusted Error Bars
Computes standard error and confidence interval of various descriptive statistics under various designs and sampling schemes. The main function, superb(), return a plot. It can also be used to obtain a dataframe with the statistics and their precision intervals so that other plotting environments (e.g., Excel) can be used. See Cousineau and colleagues (2021) <doi:10.1177/25152459211035109> or Cousineau (2017) <doi:10.5709/acp-0214-z> for a review as well as Cousineau (2005) <doi:10.20982/tqmp.01.1.p042>, Morey (2008) <doi:10.20982/tqmp.04.2.p061>, Baguley (2012) <doi:10.3758/s13428-011-0123-7>, Cousineau & Laurencelle (2016) <doi:10.1037/met0000055>, Cousineau & O'Brien (2014) <doi:10.3758/s13428-013-0441-z>, Calderini & Harding <doi:10.20982/tqmp.15.1.p001> for specific references.
Last updated 8 days ago
error-barsplottingstatisticssummary-plotssummary-statisticsvisualization
9.58 score 19 stars 2 dependents 160 scripts 781 downloadsANOPA - Analyses of Proportions using Anscombe Transform
Analyses of Proportions can be performed on the Anscombe (arcsine-related) transformed data. The 'ANOPA' package can analyze proportions obtained from up to four factors. The factors can be within-subject or between-subject or a mix of within- and between-subject. The main, omnibus analysis can be followed by additive decompositions into interaction effects, main effects, simple effects, contrast effects, etc., mimicking precisely the logic of ANOVA. For that reason, we call this set of tools 'ANOPA' (Analysis of Proportion using Anscombe transform) to highlight its similarities with ANOVA. The 'ANOPA' framework also allows plots of proportions easy to obtain along with confidence intervals. Finally, effect sizes and planning statistical power are easily done under this framework. Only particularity, the 'ANOPA' computes F statistics which have an infinite degree of freedom on the denominator. See Laurencelle and Cousineau (2023) <doi:10.3389/fpsyg.2022.1045436>.
Last updated 13 days ago
error-barsproportionsstatistical-testingstatisticssummary-statistics
3.65 score 1 stars 18 scripts 222 downloadsCohensdpLibrary - Cohen's D_p Computation with Confidence Intervals
Computing Cohen's d_p in any experimental designs (between-subject, within-subject, and single-group design). Cousineau (2022) <https://github.com/dcousin3/CohensdpLibrary>; Cohen (1969, ISBN: 0-8058-0283-5).
Last updated 5 months ago
statisticsfortran
2.70 score 1 stars 3 scripts 309 downloads